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ABSTRACT: The introduction of synthetic nicotine by the
tobacco industry, also promoted as tobacco-free nicotine, presented
new challenges for analytical chemists working in tobacco regulatory
science to develop and optimize new methods to assess new nicotine
parameters, namely enantiomer ratio and source. We conducted a
systematic literature review of the available analytical methods to
detect the nicotine enantiomer ratio and the source of nicotine using
PubMed and Web of Science databases. Methods to detect nicotine
enantiomers included polarimetry, nuclear magnetic resonance, and
gas and liquid chromatography. We also covered methods developed
to detect the source of nicotine either indirectly via determining the
nicotine enantiomer ratio or the detection of tobacco-specific impurities or directly using the isotope ratio enrichment analysis by
nuclear magnetic resonance (site-specific natural isotope fractionation and site-specific peak intensity ratio) or accelerated mass
spectrometry. This review presents an accessible summary of all these analytical methods.
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■ INTRODUCTION
Nicotine is the dominant alkaloid extracted from the Nicotiana
tabacum plant.1 It accounts for ∼95% of all tobacco alkaloids
that include nornicotine, anatabine, and anabasine among
others.2 Nicotine structure is formed of two nitrogen-containing
rings, pyridine and pyrrolidine, linked by a carbon−carbon
bond. Having a chiral carbon center at the 2′-position of the
pyrrolidine moiety (one head of the C−C bond connecting the
two rings), nicotine exits in two configurational isomers or
enantiomers: (S)-(−)-nicotine and (R)-(+)-nicotine (Figure
1).3 The naturally occurring nicotine or else known as tobacco-
derived nicotine (TDN) exists mainly as the (S)- enantiomer,
while the (R)- enantiomer ranges between 0.02 and 0.46% of the
total nicotine.4,5 On the other hand, nicotine can be synthesized,
hence not derived from tobacco, in what is currently marketed as
synthetic nicotine or tobacco-free nicotine (TFN).5,6 TFN is
mostly synthesized as a racemic mixture of (S)- and (R)-
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enantiomers (50:50),7 which could be enriched to produce
∼99% (S)-nicotine, increasing the cost of its synthesis.8

Nicotine enantiomers have similar physical and chemical
properties, yet in vitro and in vivo studies have shown that they
have different pharmacological and toxicological properties.4,9,10

For instance, studies have reported that (S)-nicotine is more
toxic than (R)-nicotine in multiple species.11,12 Consequently,
the racemic mixture of nicotine is more toxic than (R)-
nicotine.11 Moreover, in vivo imaging studies and behavioral and
performance tests on animal models have shown that (S)-
nicotine is significantly more active and pharmacologically
potent (up to 9−28 times) than (R)-nicotine.13 Likewise, in
vitro studies on animal cell lines and tissues have reported higher
activity on nicotinic receptors of (S)-nicotine compared to (R)-
nicotine.14 However, the impact of this stereoselective binding
of nicotine and different pharmacological potency on humans
has not been tested. Nevertheless, the interest in racemic
nicotine mixtures, i.e., TFN, was recently revisited by electronic
cigarette (ECIG) manufacturers, like PuffBar and others, to
exploit a loophole in the US FDA’s regulatory authority that
restricted its oversight of tobacco-derived nicotine.6,15 This
loophole was recently closed, and the U.S. Food and Drug
Administration (FDA) now regulates nicotine from all
sources.16−19

The uncertainty about TFN’s pharmacological and toxico-
logical effects in humans and the promotion by ECIG
manufacturers of TFN as reduced-risk compared to TDN
necessitates the development of several analytical methods to
resolve/quantify nicotine enantiomers and/or discern the

source of nicotine.20 For this purpose, several methods were
developed using polarimetry, liquid chromatography (LC), gas
chromatography (GC), nuclear magnetic resonance (NMR)
spectroscopy, and accelerated mass spectrometry (AMS). This
systematic review describes the various analytical methods that
were reported in the literature to separate and/or quantify
nicotine enantiomers and provides an overview of isotopic
enrichment methods used to determine nicotine source.

■ METHODOLOGY
Search Method. On August 8, 2022, a literature search on

PubMed and Web of Science databases with no time restriction
was conducted using the following terms: (“Synthetic
Nicotine”) OR (“(R)-Nicotine”) OR (“(S)-Nicotine”) OR
(“Racemic Nicotine”) OR (“Nicotine Enantiomers”).
Inclusion Criteria. Publications were included if the original

data focused on the separation of nicotine enantiomers or on the
development of analytical techniques to differentiate TFN from
TDN.
Exclusion Criteria. A publication was excluded if it does not

report separating nicotine enantiomers or developing analytical
techniques that differentiate TFN fromTDN. Additionally, non-
English, and not peer-reviewed articles were excluded.
Study Selection and Data Extraction. Two reviewers (SS

and FHM) independently examined the title and abstract of
each record to evaluate its eligibility. In case of disagreement, a
third reviewer (RH) was available to reach a consensus. Records
that met the study requirements were then collected for full-text
reading and data extraction. All the reviewers met to cross-
validate and discuss the extracted data. The data included the
techniques used, the scope of application, and outcomes.

■ RESULTS
Included Studies. The search yielded 605 records on two

databases. An additional 5 references were retrieved by hand-
searching the references. After removing duplicates, a total of
389 records were screened by titles and abstracts for inclusion. A
total of 362 records were removed at this stage and the full texts

Figure 1. Nicotine enantiomers.

Figure 2. PRISMA diagram summarizing the process of literature selection. Reasons for exclusion of a publication: not reporting the separation of
nicotine enantiomers or not developing analytical techniques to differentiate TFN from TDN.
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of the remaining 27 articles were scanned. Accordingly, a total of
23 articles were included in the review.1,3−5,8,20−37 Figure 2
shows the PRISMA diagram that summarizes the steps of the
selection process.
Results focus on summarizing the analytical methods that

were used to separate and quantify nicotine enantiomers and/or
to determine nicotine source.
Analytical Methods. Identification and Quantification of

Nicotine Enantiomers. Nicotine enantiomers are identified/
quantified by specific analytical techniques. Their separation is
based on their reaction with a chiral substance such as chiral
complexing agents in NMR techniques or on their interaction
with a chiral stationary phase in chromatographic techniques.
Thus, diastereomers with distinct physical and chemical
properties are produced.38

Polarimetry. The presence of (R)-nicotine and (S)-nicotine
can be identified using the polarimetry technique.8,23,36 A
sample of (R)-nicotine has been used to determine its
enantiomeric excess by the polarimetry method.23 This method
was performed to confirm the results obtained by conducting an
1H NMR experiment to determine the enantiomeric ratio of
nicotine isomers (vide infra). Although the polarimetry method
has not been frequently employed for e-liquid analysis, Duell et
al. used this method to report the presence of nicotine
enantiomers in Puff Bar e-liquids.8 Optically active nicotine
enantiomers, (S)-nicotine and (R)-nicotine, are characterized
with specific rotations ([α]D20) of −169° and +169°, respectively.
A polarimeter, which measures the optical rotation (α), is then
used to find the specific rotation and the enantiomeric excess of
the tested samples.36 TFN e-liquids of racemic nicotine mixtures
are expected to give an α value of 0.0°. On the contrary, slight
levorotation was observed (α values below 0.0°) in TFN e-liquid
samples. This might be due to the addition of flavors or excess
(S)-nicotine to the e-liquid. On the other hand, TDN e-liquids,
which primarily contain (S)-nicotine, would significantly turn
the plane of light dextrorotatory in comparison to the TFN e-
liquids. In addition to nicotine, e-liquid might contain chiral and
optically active flavoring compounds that lead to an alteration of
the optical rotation of the mixture. This results in imprecision in
finding the ratios of nicotine enantiomers. On another note,
depending on the nicotine production pathway, nicotine
common impurities (anabasine, nornicotine, cotinine, etc..)
may also have chiral centers that will possibly alter the optical
rotation, thus affecting the nicotine enantiomeric ratio
determination.8,22 Consequently, researchers tend to validate
the use of polarimetry with NMR spectroscopy or GC-MS
methods.8

Nuclear Magnetic Resonance. NMR spectroscopy is a
common technique that has been widely employed to identify
and quantify nicotine enantiomers.8,23,24 Jaroszewski and Olson
demonstrated that 13CNMR spectroscopy is a useful method for
the assessment of enantiomeric ratios in nicotine samples using a
chiral lanthanide complex, tris-[3-(trifluoromethyl-hydroxy-
methylene)-(+)-camphorato]-ytterbium [Yb(tfc)3].

24 Since
proton resonances are broad and their chemical shifts were
found to be sensitive to small changes in the ratio between
nicotine and [Yb(tfc)3], authors reported that 13C NMR
spectroscopy is more favorable than 1H NMR spectroscopy in
detecting nicotine enantiomers.24 In 1996, Ravard and Crooks
described a general method to determine nicotine enantiomeric
composition using 1H NMR spectroscopy with a different chiral
complexing agent: l,l′-binaphthyl-2,2′-diylphosphoric acid.23

The 1H NMR spectrum of a racemic nicotine sample showedT
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two distinct multiplets attributed to (R)-nicotine and (S)-
nicotine enantiomers. More recently, Duell et al. used 1H NMR
spectroscopy to determine the ratio of (R)-nicotine to (S)-
nicotine in different Puff Bar e-liquids.8 The authors used this
method to indirectly evaluate the nicotine source as TFN or
TDN. It should be noted that the interaction of nicotine with
added chiral complexing agent yields distant peaks in the NMR
spectrum.

Gas Chromatography.ManyGCmethods for differentiating
nicotine isomers have been reported.3,8,25,29,32−34 In 1987, Jacob
et al. developed a GC method for determining the enantiomeric
purity of nicotine.25 This was achieved by demethylating
nicotine to give nornicotine that was then converted into the
amide derivative of (−)-camphanic chiral acid and then
separating the resulting diastereomeric amide derivatives on a
capillary GC. Results demonstrated that the enantiomeric purity
of (R)-nicotine and (S)-nicotine was greater than 98%. In 1998,
Perfetti and Coleman separated and quantified nicotine
enantiomers in a variety of tobacco materials and tobacco
smoke using two chiral GC columns (cyclodexB and Rt-
BDEX).33 Results showed that near baseline resolution was
obtained for nicotine enantiomers. The authors reported that
2% is the limit for detecting the (R)-isomer in a mixture of (R)-
nicotine and (S)-nicotine. The same technique has also been
employed to determine the components of mainstream and
sidestream cigarette smoke.34 This study demonstrated that the
ratio of nicotine enantiomers differed in the mainstream smoke
of various cigarettes. In 2007, this method was modified by Liu
et al., who used a longer chiral GC column of 60 m in length.29

The detection limit of (R)-nicotine in a mixture of nicotine
enantiomers was considerably improved to reach 0.5%.29,33 This
led to a better-resolved determination of the ratio of (R)-
nicotine to total nicotine in cigarette smoke and tobacco
samples. In an attempt to assess the possible racemization of (S)-
nicotine during cigarette smoking simulated using a pyrolysis
chamber, Clayton et al. used a chiral GC column to separate
nicotine enantiomers in the pyrolysate.32 Results showed that
there was no rise in (R)-nicotine levels over a wide pyrolysis
temperature range.
Similar to their NMR assay, Duell et al. used a GC method to

differentiate between TDN and TFN e-liquids using a Beta DEX
120 GC column.8 In a similar study, e-liquids were tested using a
chiral GC column (CHIRALDEX G-TA) but the nicotine
isomers retention times were considered excessively long, and
quantitative analysis was challenging because the peaks were not
entirely separated;3 in response, the authors developed an LC
method to separate nicotine enantiomers.

Liquid Chromatography. Similarly, LC has been extensively
employed for nicotine chiral separation.1,3−5,20,21,26−28,30,35 In
1987, Armstrong et al. reported the use of a packed LC
microcolumn with a mobile phase saturated with a chiral
selector (β-cyclodextrin) to separate nicotine enantiomers.27

The baseline separation is usually reflected by a resolution factor
(Rs) which is a quantitative measurement of the degree of
separation between two chromatography peaks.39 If Rs is ≥1.5,
this reflects a baseline separation of the peaks.27 In this study,
nicotine enantiomers had a factor of 1.7, indicating that (R)-
nicotine and (S)-nicotine were well resolved.27 Compared to
traditional LC packed column methods, microcolumn LC offers
three additional benefits: more theoretical plates, fewer
quantities of the frequently expensive chiral additives for chiral
mobile phase work, and fewer volumes of samples/solvents.27

However, this was a time-consuming method with a long

analysis time (4 h). Later, this same group evaluated the use of a
bonded β -cyclodextrin chiral stationary phase in the LC
reversed-phase mode for the separation of nicotine enantiomers,
but this separation could not be achieved.26 Demetriou et al.
developed a sensitive and reproducible LC method using a
commercially available chiral α1-acid glycoprotein stationary
phase and a binary solvent program consisting of dipotassium
phosphate and decanoic acid and methanol.35 Armstrong et al.
analyzed nicotine enantiomeric composition in a variety of
consumer products, natural products, and commercial reagents.1

The selected column for the LC method was the Chiralcel OJ
column with a stationary phase of silica gel and adsorbed
cellulose tris(4-methylbenzoate). Tang and co-workers de-
scribed an effective and efficient LC method that achieved the
optimum separation of nicotine enantiomers in a shorter elution
time. However, the elution order was opposite to that previously
reported by Demetriou et al.30,35 This method utilized two
derivatized cellulose chiral stationary phases (tris(4-methyl-
benzoyl) cellulose) and tris(3,5-dimethylphenyl carbamoyl)
cellulose) operating in normal phase to separate (R)- and (S)-
nicotine. This study suggested that the choice of chiral stationary
phase, chiral selectors, and mobile phase composition can
significantly affect enantio-resolution and solute retention. The
use of chiral selectors or columns relies on the differential spatial
interaction of the two nicotine isomers with these molecules in
the mobile or stationary phase.
In 2018, Hellinghausen et al. accomplished a rapid

enantiosepartion of nicotine in less than 20 s (Rs = 2.6) using
an optimized ultrafast LC technique.21 A modified macrocyclic
glycopeptide stationary phase was used with a mobile phase
composed of methanol and ammonium formate. Moreover, a
novel, rapid, and sensitive ultraperformance LC-MS/MS has
been developed in 2019 by Ji and co-workers.4 After
optimization, the selected column was Chiralpak AGP, the
mobile phase consisted of ammonium formate with ammonium
hydroxide and methanol in an isocratic elution program.
Nicotine enantiomers in tobacco leaves and different tobacco
products were successfully resolved within 10 min. The same
group reported a rapid and effective LC-MS method for
determining the concentration of nicotine enantiomers in TFN
products using an LC equipped with a triple quadrupole MS.20

The stationary phase was made of a modified macrocyclic
glycopeptide bonded to superficially porous particles. An
isocratic elution was carried out using a mobile phase of
methanol and ammonium trifluoroacetate and the results
demonstrated a very short retention time (less than 2 min)
with Rs = 3.0. In this study, the differences between various TDN
and TFN products were highlighted. All studied TFN products
contained a racemic nicotine mixture; however, only small
quantities of (R)-nicotine were detected in TDN products.
Similarly, a normal phase LC procedure was developed by
Zhang et al. to effectively separate (R)-nicotine and (S)-nicotine
in different TFN and TDN samples, and indirectly determine
the nicotine source.5 Small quantities of (R)-nicotine ranging
from 0.02% to 0.76%weremeasured in themajority of the tested
samples much lower than that in TFN e-liquid and standard
racemic nicotine mixture (50%). They concluded that if the (R)-
nicotine ratio is around 1%, nicotine is expected to be naturally
derived from tobacco leaves, however, if this ratio is 50% or
100%, nicotine is assumed to be synthesized. Also, an LC
coupled with a diode array detector was utilized for a complete
separation of nicotine enantiomers in various e-liquids: natural,
and TFN. Only in TFN e-liquids, both enantiomers were
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detected in similar proportions.3 Moldoveanu recently devel-
oped a method for the analysis of nicotine enantiomers using
LC-MS/MS from seven different commercial sources.28 The
Chiracel OJ-3 column was used to perform the LC separation in
isocratic conditions. The author detected a small percentage
(0.21−2.19%) of (R)-nicotine in commercially available
nicotine obtained from tobacco which varies depending on the
source of the tobacco and perhaps the extraction method. An e-
liquid advertised as containing synthetic (S)-nicotine was found
to contain a very low percentage of (R)-nicotine whereas a
racemic nicotine mixture standard was shown to contain 50/50
(R)/(S)-nicotine.

Identification of Nicotine Source. Indirect Identification of
Nicotine Source. As shown in the previous section, several
analytical methods have been used to separate and quantify (R)-
nicotine and (S)-nicotine in a wide variety of matrices. The ratio
of (R)-nicotine present in the sample helps in assigning the
nicotine source. However, if synthetic nicotine was purified to
become 99% (S)-nicotine, TFN becomes indistinguishable from
TDN if the previously described analytical methods were used.
Other analytical methods were found to be used for this
purpose.22 In fact, it was suggested that TFN and TDN could be
distinguished by detecting specific impurities like tobacco-
specific nitrosamines, nicotine degradants, and metals in TDN
samples from one hand and synthetic precursors and residual
solvent impurities in TFN samples from the other.22 However,
this approach is challenged by enhanced purity in processing
TFN and TDN products and also by the detection limits of the
adopted analytical methods.

Direct Identification of Nicotine Source. Nuclear Magnetic
Resonance. In 1981, Martin and Martin introduced the site-
specific natural isotope fractionation determined by NMR
(SNIF-NMR) that gives site-specific isotope ratios of 2H/1H
(deuterium/proton).40 This technique was later used by the
same group and others to authenticate the source compounds
including vanillin, benzaldehyde, and sugars in juices and wines
among other matrices.41−45 Martin and co-workers used this
method to analyze nicotine from different regions of the world.37

However, this method was recently criticized because it needs
either a high quantity of the sample or a prolonged runtime, and
also it should be coupled with isotope ratio mass spectrometry to
determine the overall 2H/1H isotopic ratio of nicotine.
Alternatively, a site-specific peak intensity ratio NMR (SPIR-
NMR) was introduced to analyze the nicotine source by directly
comparing 2H/1H SPIR values derived from 1H and 2H NMR
spectra.31 This technique was used to differentiate TFN from
TDN in natural nicotine samples and synthetic (R)-nicotine and
racemic nicotine but not in tobacco products.
Accelerator Mass Spectrometry. Cheetham and co-workers

explored different techniques to distinguish between TDN and
TFN including screening for impurities (nicotine degradants
and metals), chiral separation of nicotine and nornicotine
enantiomers, and radiocarbon analysis.22 However, only radio-
carbon analysis of 14C successfully differentiated TDN from
TFN in all tested samples. The standard procedure ASTM
D6866 which uses AMS to separate 14C from the other two
carbon isotopes (12C and 13C) is the most frequently employed
method to determine the radiocarbon content.46 Measuring the
14C content of a sample indicates if the material is synthesized,
biologically derived, or a combination of both. Usually, the
outcome is expressed as% Biocarbon. Purely synthetic
substances derived from petrochemicals will yield a result of
0% Biocarbon, while pure biological substances will give a result

of 100% Biocarbon. Depending on the proportions of each
source, synthetic materials made from a combination of
petrochemical and biological feedstocks will fall between 0
and 100% Biocarbon. As determined in this study, there were
three possible outcomes for the radiocarbon results of the
nicotine analysis. TFN e-liquids had a% Biocarbon of less than
40% whereas TDN e-liquids had a% Biocarbon of 100%.
Accordingly, adulterated e-liquids with TFN being mixed with
TDN will fall between the two extremes (this has not been
detected in any commercially available tobacco product). Yet,
this technique is not selective during separation. It determines
the total% Bio-Carbon of the analyzed sample and not that of
nicotine alone. Thus, this technique requires nicotine extraction
pretreatment.22

Table 1 summarizes the characteristics of the reviewed
analytical methods for the separation of nicotine enantiomers
and the evaluation of nicotine source.

■ DISCUSSION AND CONCLUSION
Analytical methods for the enantioseparation of nicotine have
been developed through the years. By scoping the GC methods
included in this review, some studies were outdated due to long
run time (up to 4 h).3,27,29,33,34 Additionally, two references
reported no complete separation.3,26 The polarimetry method
was shown to be among the easiest methods, yet the data
analysis could be complicated by the presence of other chiral
compounds such as flavors in the matrix. A common practice
among the different research groups is to combine polarimetry
with other methods to cross-validate the results. The NMR
detection of (R)-nicotine and (S)-nicotine is an easy method to
adopt, but it needs access to an NMR instrument and the sample
should not have any considerable impurities in the low field of
the NMR spectrum (region 8−8.5 ppm). On the other hand,
chromatography methods (i.e., GC and LC) allow for
simultaneous purification of the sample and enantiomeric
separation of nicotine.47 Nonetheless, the reviewed analytical
methods that determine the (R)-/(S)-nicotine ratio can benefit
tobacco regulation if the use of TFN in tobacco products
prevails. This can be also used to study the abuse liability of TFN
tobacco products.
As mentioned before, TDN exists predominately in the (S)-

enantiomer, containing only minor amounts of the (R)-
enantiomer. Thus, if the percentage of (R)-nicotine that is
detected using the aforementioned analytical techniques
exceeds a certain percentage (>1.5%), this indicates that the
tested samples could contain TFN.22 Moreover, the “enantio-
meric ratio” and the “impurities” approaches will not be able to
account for the presence of TFN extra-purified samples that are
made only of the (S)-enantiomer. Accordingly, it is suggested
that SNIF-NMR, SPIR-NMR, or AMS methods are used to
confirm the nicotine source.22,31,37
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